GULF SAHODAYA (SAUDI CHAPTER) EXAMINATION 2009 GRADE – 11

SUBJECT: PHYSICS
SET - 1/3
Total Pages: 3
Total Pages: 3

Max. Marks: 70

General Instructions:

- (i) All Questions are Compulsory.
- (ii) Marks for each question are indicated against it.
- (iii) Question no. 1 to 8 are very short answer carrying 1 Mark each. Answer all in one word or one sentence.
- (iv) Question no. 9 to 18 are short answer of 2 Marks each. Answer these in about 30 words.
- (v) Question no. 19 to 27 are short answer of 3 Marks each. Answer these in about 40 words.
- (vi) Question no. 28 to 30 are long answer of 5 Marks each. Answer these in about 70 words.
- (vii) Use of calculator is not permitted. However, you may ask for log tables, if required.

- 1. A car moves through a circular road with a constant speed. Is the car an inertial frame of reference or a non-inertial frame of reference? Why? [1M.
- 2. A body thrown vertically up with an initial velocity returns to the same point after few second. Draw velocity-time graph for the motion of the body. [1M.]
- 3. The temperature of two bodies measured by two thermometer are $t_1 = 25^{\circ} \pm 0.5^{\circ} \text{C}$ and $t_2 = 20^{\circ} \pm 0.2^{\circ} \text{C}$. Calculate the temperature difference and the error there in. [1M.]
- 4. A satellite revolves round a planet in a circular orbit of radius r. If the gravitational force on the satellite by the planet is F newton, what is the work done by the planet on the satellite when the satellite covers half of orbit? [1M.]
- 5. If the ice on the polar caps of earth melts, how will it affect the duration of the day? Why? [1M.]
- o. Two gases helium and hydrogen are in thermal equilibrium. Then what is the ratio of kinetic energies of helium and hydrogen molecules? [1M.]
- 7. What is the maximum value of gravitational potential and where? [1M.]
- 8. Why moon has no atmosphere? [1M.]
- 9. Displacement of a particle executing simple harmonic motion is represented by $x = 0.24 \cos (200 t 1.5)$ where x is in metre and t in second. Then, find
 - (a) amplitude
- (b) angular frequency
- (c) period and (d) initial phase of the simple harmonic motion. [2M.]
- 10. State the first law of thermodynamics.
 - A gas enclosed in a container with non-conducting walls is expanded by a volume ΔV . Apply first law of thermodynamics for this process and represent it mathematically.

[2M.]

11. What are the main parts of a heat engine? Draw a labelled schematic diagram of heat engine. [2M.]

- 12. Define mean free path. How does it depend on (i) diameter of gas molecules and (ii) number of molecules per unit volume? [2M.]
- Two rods A and B are of unequal lengths. Rod A is twice longer than B. Their thermal conductivities are K_1 and K_2 and radii r_1 and r_2 respectively. Find the ratio K_1 by K_2 , if both rods conduct the same amount of heat when their ends are kept at the same temperatures T_1 and T_2 . [2M.]
- 14. Velocity of a particle at an instant of time t is $v = at + bt^2 + c$ where a, b and c are constants. Find the dimensions of a and b. [2M.]
- Derive the expression $v^2 = u^2 + 2as$ from velocity time graph, where the symbols have usual meanings? [2M.]
- 16. A cyclist comes to a skidding stop in 5m. During this process, the force on the cycle due to the road is 300N and is opposite to the motion of the cycle.
 - (a) How much work does the road do on the cycle?
 - (b) How much work does the cycle do on the road? Why? [2M.]
- 17. Find the torque of a force 8i + 2j 2k newton about the origin. The force act on a particle whose position vector is i + j k metre. [2M.]
- 18. Define the term impulse. Obtain the relation between impulse and momentum. [2M.]

OR

Derive an expression for the maximum velocity of a car on a level curved road.

- 19. Find the magnitude and direction of the resultant of two vectors A and B in terms of their magnitudes and angle θ between them. [3M.]
- 20. Derive an expression for the variation of acceleration due to gravity with depth from the surface of earth. Then find its value at the centre of earth. [3M.]
- 21. (a) Define coefficient of static friction.
 - (b) Determine the maximum acceleration of the train in which a box lying on its floor will remain stationary, given that the coefficient of static friction between the box and the trains floor is 0.15. [3M.]
- 22. State and prove the law of conservation of momentum. Mention one example where we make use of the law. [3M.]
- 23. (a) Distinguish between elastic and inelastic collisions.
 - (b) Does the total energy conserved in either of the collisions?
 - (c) Two bodies having masses m₁ and m₂ travelling with velocities v₁ and v₂ collide each other. After collision, they stick together and travel with a common velocity. What type of collision is this? [3M.]

OR

Two bodies of masses m_1 and m_2 moving with velocities u_1 and u_2 undergo elastic collision in one dimension. Derive expressions for their final velocities in terms of m_1 , m_2 , u_1 and u_2 .

- 24. (a) State the perpendicular axes theorem of moment of inertia.
 - (b) A grind stone has moment of inertia 6 kgm² about its axis. A constant torque is applied and the grind stone is found to acquire a speed of 150 rotations per minute in 10 sec. after starting from rest. Calculate the torque. [3M.]

- 25. State Pascal's law. Explain how the law is applicable in hydraulic lifts. [3M.]
- 26. A string of mass 2.5 kg is under a tension of 200N. The length of the stretched string is 20m. If a transverse jerk is struck at one end of the string, how long does the disturbance take to reach the other end? [3M.]
- 27. Define degrees of freedom.

Give the number of degrees of freedom of a diatomic molecule. Then, find the ratio of specific heat capacities. [3M.]

- 28. (a) What is Doppler effect in sound?

 Derive an expression for the apparent frequency of sound heard by a listener if both the listener and source are in motion.
 - (b) A pipe 30 cm long, is open at both ends. Which harmonic mode of the pipe resonates at 1.1 KH_z source? Take the speed of sound = 330 m/s. [5M.]

OR

Define simple harmonic motion.

Derive expressions for potential energy, kinetic energy and total energy of a particle executing simple harmonic motion. Represent the energies graphically.

- 29. (a) Define stress and strain. Draw a stress strain graph of a wire and explain elastic limit and yield point.
 - (b) The excess pressure inside a soap bubble is twice that of another soap bubble. What is the ratio of the volumes of the first and second bubbles? [5M.]

OR

- (a) Name the different forms of energy possessed by a liquid.
- (b) State and proved Bernoulli's theorem. Mention any two applications of the theorem.
- 30. (a) What is a projectile? Derive expression for the horizontal range of a projectile. Discuss the condition for maximum range.
 - (b) The position of a particles is given by $\vec{y} = 3t \ \hat{i} + 2t^2 \ \hat{j} + 5k$. Calculate the magnitude of the velocity of the particle at t = 1 sec. [5M.]

OR

Define uniform circular motion. Derive an expression for acceleration of a particle in uniform circular motion. Explain why this acceleration is called centripetal acceleration.

